
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 1

EPGQ: Efficient and Private Feature-based Group
Nearest Neighbor Query over Road Networks

Yunguo Guan, Rongxing Lu, Fellow, IEEE, Yandong Zheng, Songnian Zhang, Jun Shao, Senior Member, IEEE,
and Guiyi Wei

Abstract—The rapidly growing location-based services enable
service providers to accumulate plentiful descriptions on points
of interest (POI), which can be used to support expressive
POI queries. In this paper, we study a type of POI query,
named feature-based group k nearest neighbor query over road
networks, in which a user has a feature set and several locations
and wishes to find k closest POIs that have similar sets of features
to the query. As the POI datasets grow, service providers tend
to outsource their datasets to a powerful yet not-fully-trusted
cloud, which calls for privacy preservation on datasets and user
queries. Although many schemes have been proposed for privacy-
preserving POI queries, none of them can simultaneously support
privacy-preserving set similarity and road network distance com-
parison. To address this challenge, we propose an efficient and
private feature-based group nearest neighbor query scheme. In
our scheme, we achieve privacy-preserving distance comparison
by employing the road network hypercube embedding technique,
and design an encrypted index based on B+-tree for privacy-
preserving set similarity range queries. Security analysis shows
our proposed scheme can preserve the privacy of the dataset
and queries, and performance evaluation also demonstrates it is
computationally efficient.

Index Terms—Privacy-preserving, Location-based services,
Group nearest neighbor query, Feature similarity, Road network.

I. INTRODUCTION

THE proliferation of smartphones, positioning and wireless
communication technologies has stimulated the wider use

of location-based services (LBS). Meanwhile, as LBS becom-
ing part of our daily life, the service providers accumulate
a huge volume of descriptions (e.g., check-in data and tags)
over points of interest (POI). These data can be used to support
more expressive POI queries, such as skyline queries [1]–[3]
and group k nearest neighbor (GkNN) queries [4], [5]. In this
paper, we consider feature-based GkNN queries motivated by
the scenario where a user wants to find the k POIs that are
located closely to a set of referenced locations and have sets
of features similar to query features. For instance, when a
user visits a city in his/her first time, the trip may consist
of multiple locations in the city. The user can employ the
GkNN query to find the k-nearest hotels to the locations
which have sets of features similar to the user’s preference,
e.g., whether they provide breakfast and are beachfront or

Y. Guan, R. Lu, Y. Zheng, and S. Zhang are with the Faculty of Computer
Science, University of New Brunswick, Fredericton, Canada E3B5A3. E-mail:
yguan4@unb.ca, rlu1@unb.ca, yzheng8@unb.ca, szhang17@unb.ca.

J. Shao and G. Wei are with Zhejiang Gongshang University, Hangzhou,
China 310018. E-mail: chn.junshao@gmail.com, weigy@zjgsu.edu.cn.

not. Specifically, we employ the road network distance as the
distance metric to better capture distances between locations in
the city, and the similarity between the feature sets is described
by Jaccard similarity. As the volume of the dataset grows, it
may exceed the capability of the service providers. Hence,
they tend to outsource the dataset and the feature-based GkNN
query services to a powerful yet not-fully-trusted cloud, similar
to many other services [6]–[8].

While enjoying the reliable quality of service, the service
provider and query users still have their privacy concerns.
As the dataset is the service provider’s property, it prefers
to outsource the services while preserving the data privacy
against the cloud. For the query users, the query requests
contain their preferences and planned locations, and the users
want to enjoy the services without leaking the information to
other entities in the system. An intuitive approach is to use
privacy preservation techniques, but it will obstruct the cloud
from querying the protected data. As detailed in Section VII,
many schemes [9]–[17] have been proposed for privacy-
preserving kNN queries over road networks or GkNN queries.
For the privacy-preserving kNN schemes over road networks
[9]–[13], they cannot be efficiently adapted to support GkNN
queries. While for the GkNN schemes [14]–[17], they ei-
ther focus on Euclidean distance or do not consider dataset
privacy against. Furthermore, these schemes cannot support
queries with feature similarity criteria. Therefore, the privacy-
preserving feature-based GkNN query is still challenging.

Aiming at the above challenges, this paper propose an
efficient and private feature-based group nearest neighbor
query (EPGQ) scheme that supports road network distance.
Specifically, the contributions of this paper are three-fold.
• First, we design a privacy-preserving distance compari-

son (PDC) technique based on the road network hypercube
embedding technique, which can compare the sums of road
network distances between two records and a set of reference
locations without revealing the locations and the difference of
the sums.
• Second, we build an encrypted index to organize the

encrypted dataset and support feature-based GkNN queries.
With the encrypted index, an encrypted feature-based GkNN
query can be conducted in a filtration-and-verification manner,
and both the prefix and length of the feature sets are considered
during the filtration step.
• Third, we conduct rigid security analysis to show that our

PDC technique is selectively secure, and our proposed EPGQ
scheme can well preserve the privacy of the dataset, query
requests, and the corresponding query results. Performance

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 2

analysis also demonstrates that our proposed scheme is indeed
efficient for both query users and the cloud server.

The remainder of this paper is organized as follows. In
Section II, we present the formal definition of the feature-
based GkNN query and the road network hypercube embed-
ding (RNHE) as our preliminaries. Then, we formalize the
system model and security model, and identify our design goal
in Section III. In Section IV, we present our EPGQ scheme,
followed by its security and performance analysis in Section V
and Section VI, respectively. Finally, we review some related
works in Section VII and conclude this work in Section VIII.

II. PRELIMINARIES

In this section, we formalize our feature-based group kNN
query and recall the road network hypercube embedding
technique as our preliminaries.

A. Feature-Based Group kNN Query

Given a set of POI (points of interests) records P , where
each POI p ∈ P has a set of features Fp ⊆ F and a location
lp, and F is the space of all possible features in the system,
a feature-based group kNN query can be defined as follows.
Definition 1 (Feature-Based Group kNN Query). Given a set
of features Fq ⊆ F , a similarity threshold τ , and a set of
reference points Q = {lqi | i = 1, 2, · · · }, a feature-based
group kNN query q = {Fq, τ, Q} is to obtain a set of k POI
records Pq from P satisfying the following two conditions.

i) Pq ⊆ PFq,τ = {p | p ∈ P, sim(Fp, Fq) ≥ τ}, where
sim(·, ·) is the similarity function;

ii)
∑
lqi∈Q

dist(lp, lqi) ≤
∑
lqi∈Q

dist(lp′ , lqi), for all
p ∈ Pq and p′ ∈ PFq,τ \ Pq , where dist(·, ·) represents the
distance function.

Here, we choose the Jaccard similarity as the similarity
metric. Specifically, given two sets Fp and Fq , their Jaccard
similarity is defined as sim(Fp, Fq) =

|Fp∩Fq|
|Fp∪Fq| .

!
"

= ", !

"!!
!!! #!! = ("!! , !!!)

""
!"

#" = "", !"

Fig. 1: An example of a road network G = (V, E ,W (·)) where each
location l is described as a tuple l = (v, δ), i.e., the nearest vertex
v ∈ V to l and the Euclidean distance δ between l and v.

Furthermore, in this work, we consider all POI’s locations
together with all reference points Q as the locations in the
road network G. Similar to many previously-reported works
on road networks [12], we define the road network to be a 3-
tuple G = (V, E ,W (·)), where V and E respectively represent
the sets of vertices (junctions) and edges (road segments), and
each edge e ∈ E has a positive integer weight W (e) (non-
integer weights can be easily converted [18]). Then, as shown
in Fig. 1, a location l in G, which may not always locate at
a vertex, can be represented as a tuple l = (v ∈ V, δ), i.e.,
the nearest vertex to l and the Euclidean distance between

l and v. In this way, the distance between two locations
lp = (vp, δp) and lqi = (vqi , δqi) in this paper will be defined
as dist(lp, lqi) = dSP (vp, vqi) + δp + δqi , i.e., the sum of
the shortest path distance between vp and vqi , denoted by
dSP (vp, vqi), and the distances from lp and lqi to their closest
vertices vp and vqi .

B. Road Network Hypercube Embedding

Road Network Hypercube Embedding (RNHE) [19] is a
technique that maps a road network into a high-dimensional
hypercube space where each vertex is linked to a label, such
that the shortest path distance between two vertices can be
computed from the Hamming distance between their labels.

F!

F"

F#
C

#!

###$#%

#&

#' #(#)
L

%"

%!

%#%$

%%

%&

%' %(

%)

%"*

&/L *

&/L "

(a) (b)

Fig. 2: Given a road network G as shown in (a), it has one outer
face C and three interior faces {F1, F2, F3}, where F1 and F3 are odd
faces, and F2 is an even face. As shown in (b), L = {e1, e9, e10, e5}
is an alternating cut, which partitions G into two subgraphs, {G/L}0
and {G/L}1. Specifically, beginning from e1, L cuts through two odd
faces. In the first odd face F1, e1 has two opposite edges e9 and e8,
and e9 (the left one) is chosen. Therefore, in the second odd face F3,
L chooses e5 (the right one) instead of e4.

Before delving into the details of RNHE, we first intro-
duce several related notions. Given a road network G, an
interior face is a cycle of G that bounds a connected region.
Correspondingly, the outer face C of G is the unbounded
face, as shown in Fig. 2(a). In a face F of G, two edges
e = (vi, vj) and e′ = (v′i, v

′
j) are opposite to each other if

dSP (vi, v
′
i) = dSP (vj , v

′
j) = diaF, where diaF represents the

diameter of F. Furthermore, based on the number of edges
forming a face, faces can be categorized into two types,
namely, odd faces and even faces. Then, we can deduce that,
in an even face (resp., odd face), each edge e has one unique
(resp., two) opposite edge(s). In addition, a cut L is a sequence
of edges {e1, e2, · · · , e|L|} satisfying that i) e1 = e|L| or e1 and
e|L| are edges of the outer face C; ii) every two adjacent edges
ei and ei+1 are included in the same interior face; and iii) ei+1

is an opposite edge of ei. By removing the edges in a cut L, G
can be partitioned into to two subgraphs {G/L}0 and {G/L}1.
While cutting through G, a cut L may encounter several odd
faces, where an edge has two opposite edges. Then, we define
an alternating cut to be a cut L that alternates over odd faces.
That is, if L chooses the left (resp. right) opposite edge in an
odd face, then it chooses the right (resp. left) opposite edge
in the next odd face, as shown in Fig. 2(b).

Based on the above notions, the labels for all vertices in
G can be generated in three steps. First, the label of each
vertex v ∈ V will be initialized as an empty string. Second, we

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 3

enumerate all alternating cuts in G. Third, for each alternating
cut L, we append a bit 0 to the label of each vertex in {G/L}0
and append 1 to those of vertices in {G/L}1. In addition, all
alternating cuts that have not cut through an odd face will be
duplicated. Finally, each vertex in G will be assigned a binary
string Lv as its label (see [16] for further details). In Fig. 3,
we present all alternative cuts and the labels of all vertices in
the road network G presented in Fig. 2. Based on the labels of
v1 and v6, we can easily compute their shortest path distance

dSP (v1, v6) =
1

2
dH((11111111)2, (01000010)2) = 3,

where dH(·, ·) represents the Hamming distance between two
binary strings.

Cut Edges
L1 {e1, e8}
L2 {e1, e9, e10, e5}
L3 {e2, e6}
L4 {e2, e6}
L5 {e3, e7}
L6 {e3, e7}
L7 {e4, e5}
L8 {e4, e10, e9, e8}

(a)

Vertex Label
v1 11111111
v2 00111111
v3 00001111
v4 00000011
v5 00000000
v6 01000010
v7 01110010
v8 01111110

(b)

Fig. 3: All alternative cuts in G presented in Fig. 2, and the
corresponding labels generated for the vertices in G. Note that L3
and L5 never cut through an odd face, so we duplicate them as L4
and L6, respectively.

III. MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

A. System Model

In our system model, we consider a privacy-preserving
feature-based group kNN query scenario, which contains three
types of entities, namely, a service provider SP, a cloud server
CS, and a set of query users, as shown in Fig. 4.

Service Provider Query Users

Cloud

Authorization Key

POI Dataset Query Request

!! = {$"}, ' = 0.3

Query Result

+ ,# -# !#
.$,$ 2 $$, $%, $"
.& ,& 5 $&, $%, $"
.% ,% 1 $%, $'
." ," 2 $$, $", $'

ℛ ,(-(
3$,) 7
3& ,' 3
3% ,* 4

Fig. 4: System model under consideration.

• Service provider: In our system model, the service
provider SP has a set of POIs P , where each POI record
p ∈ P is linked to a set of features Fp ⊆ F . Furthermore, each
POI p has a location lp = (vp ∈ V, δp) in the road network
G = (V, E ,W (·)). Based on the POI dataset P , SP wants to

offer the feature-based group kNN query services to authorized
users, but he/she might be weak in terms of computational
capacity. Hence, SP is willing to outsource P and the services
to a powerful cloud server. Before being outsourced to the
cloud, P will be encrypted to preserve its data privacy.
• Cloud Server: The cloud server CS is equipped with

powerful computational resources and abundant storage space,
so that it can be appointed to store the dataset and deliver
the feature-based group kNN query services. In specific, after
being initialized by the service provider, CS can respond to
feature-based group kNN queries, and each of these queries
consists of three parts, namely i) a feature set Fq ⊆ F , ii)
a similarity threshold τ , and iii) a set of reference points
Q = {lqi | i = 1, 2, · · · }, where each point lqi = (vqi , δqi)
represents a location in G. Upon receiving a query request
q = {Fq, τ, Q} from an authorized query user, the cloud server
returns k POIs whose sums of distances to the reference points
are minimum, and their similarities to Fq are greater than or
equal to the threshold τ .
• Query Users: In our system model, a query user has to be

authorized by the service provider before he/she can query the
feature-based group kNN query services. As shown in Fig. 4,
the service provider authorizes a query user by assigning the
authorization key. After that, the query user can enjoy the
feature-based group kNN query services offered by the cloud
server. That is, they can query the cloud server to find the k
POIs that satisfy the similarity range constraints (Fq, τ) and
are the closest to the reference points Q in terms of the sum
of distances.

B. Security Model

In our security model, we consider the service provider
SP is trusted, since he/she owns the POI dataset and the
services, and has no motivation to deviate from the services.
For the query users, we consider they are honest-but-curious.
Specifically, they might be curious about the plaintext of other
users’ query requests and the corresponding results, but they
will submit correct queries. Furthermore, the cloud server is
honest-but-curious as well. That is, it will faithfully conduct
feature-based group kNN queries over the encrypted dataset,
but it might be curious about the plaintext of not only the
POI dataset but also the query requests and results. Note
that, external adversaries may also launch other active attacks,
e.g., Denial-of-Service (DoS) attacks. As this paper focuses
on privacy preservation in feature-based group kNN queries,
those attacks are out of scope of this paper and will be
discussed in our future work.

C. Design Goal

Based on the above system model and security model,
the design goal of this work is to design an efficient and
privacy-preserving feature-based group kNN query scheme.
Specifically, the following properties should be satisfied.
• The proposed scheme should be privacy-preserving. As

detailed in our system model, the POI dataset are private to
the service provider, and the query requests and results will
also reveal some privacy of the query users. Hence, the primary

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 4

requirement of our scheme is to protect the plaintext of the
POI datasets, query requests, and the corresponding results
against other query users.
• The proposed scheme should be efficient. While preserving

the data privacy in the system, some cryptographic techniques
need to be employed, which will unavoidably introduce extra
computational costs. However, to make the proposed scheme
more practical, its efficiency should also be considered.

IV. OUR PROPOSED SCHEME

In this section, we present our proposed efficient and
private feature-based group k nearest neighbor query (EPGQ)
scheme. Before delving into the details of our scheme, we first
introduce our privacy-preserving distance comparison (PDC)
technique as our building block, followed by the main idea of
our EPGQ scheme.

A. Privacy-Preserving Distance Comparison

Given locations l = (v, δ), l′ = (v′, δ′), and lq = (vq, δq)
in the road network G, our PDC technique returns whether
dist(l, lq) ≥ dist(l′, lq) while without revealing l, l′ and lq .
We introduce our idea to compress RNHE and describe our
PDC construction.

As detailed in [19], the length of an original RNHE label is
|Lv| = |C|, i.e., the length of the outer face. However, many
alternative cuts may partition the graph into the same pair of
subgraphs in real-world road networks, e.g., cuts {L3, L4} and
{L5, L6} in Fig. 3 (a). Based on this observation, we convert
L = {Lv}v∈V into L∗ = ({L∗v | v ∈ V}, W = {wi}|Lv|

i=1),
where each bit bi ∈ L∗v links to a weight wi representing the
number of alternative cuts related to it. For instance, Lv1 =
11111111 and Lv6 = 01000010 are respectively mapped into
L∗v1 = 111111 and L∗v6 = 010010, and the weight array W =
{1, 1, 2, 2, 1, 1}. Then, the distance between v1 and v6 can be
computed by

dSP (v1, v6) =
1

2

|L∗v|∑
i=1

wi · (bv1,i ⊕ bv6,i) = 3.

For the simplicity of notation, hereinafter, we use L as the
collection of compressed labels and Lv ∈ L is one of such
labels. Concretely, we describe our PDC construction ΠPDC =
(DKeyGen,DEnc,DTokenGen,DCmp) as follows.
• DKeyGen(G): Given the road network G = (V, E ,W (·)),

the algorithm generates the compressed RNHE labels L. Let
d = |Lv|. Then, the algorithm generates two invertible real
matrices M1 and M2 ∈ R(d+3)×(d+3) as the secret key skD.
• DEnc(L, skD = (M1,M2), l = (v, δ)): Given the secret

key skD and a location l = (v, δ), the algorithm first retrieves
the Lv = {bi}i=1 from L. Then, the algorithm encrypts l into
two vectors, namely, ED(l)1 and ED(l)2, where

ED(l)1 =(r1, r1Lv, r1δ, r2)M1,

ED(l)2 =(r′1,−r′1Lv,−r′1δ, r′2)MT
2 ,

and r1 > r2 > 0 and r′1 > r′2 > 0 are random real numbers.

• DTokenGen(L, skD, lq): Given L, skD and a location
lq = (vq, δq), the algorithm first retrieves Lvq = {bq,i}di=1

from L. Then, the algorithm encrypts lq into a matrix

TKD(lq) = M−1
1

 0 r′′1 L̃vq 0

r′′1 L̃
T
vq 0 0

0 0 r′′2

M−1
2 ,

where L̃vq = ({wi(1 − 2bq,i)}di=1, 1) is a vector, and r′′1 >
r′′2 > 0 are random numbers.
• DCmp(ED(l)1, ED(l′)2,TKD(lq)): Given two cipher-

texts generated by DEnc and an encrypted token gener-
ated by DTokenGen, the algorithm can determine whether
dist(l, lq) ≥ dist(l′, lq) or not by comparing

ED(l)1TKD(lq)ED(l′)T2 > 0. (1)

Correctness. The difference between two hamming dis-
tances equals to the sum of difference on each bit, i.e.,

dH(Lv, Lvq)− dH(Lv′ , Lvq)

=
∑d

i=1
wi(bi ⊕ bq,i − b′i ⊕ bq,i)

=
∑d

i=1
wi ((bi + bq,i − 2bibq,i)− (b′i + bq,i − 2b′ibq,i))

=
∑d

i=1
wi(bi − b′i)(1− 2bq,i).

Then, we can simplify the left-hand side of Eq. (1) to be

ED(l)1TKD(lq)ED(l′)T2

=

r1

r1Lv
r1δ
r2

T

M1M
−1
1

 0 r′′1 L̃q 0

r′′1 L̃
T
q 0 0

0 0 r′′2

M−1
2 M2

r′1
−r′1L′v
−r′1δ′
r′2

= r1r

′
1r
′′
1 (Lv ◦ L̃q − L′v ◦ L̃q + δ − δ′) + r2r

′
2r
′′
2

= r1r
′
1r
′′
1 (

d∑
i=1

wi(bi − b′i)(1− 2bq,i) + δ − δ′) + r2r
′
2r
′′
2

= r1r
′
1r
′′
1 (dH(Lv, Lq)− dH(L′v, Lq) + δ − δ′) + r2r

′
2r
′′
2 .

Since r1 > r2 > 0, r′1 > r′2 > 0, and r′′1 > r′′2 > 0, we have
r1r
′
1r
′′
1 > r2r

′
2r
′′
2 > 0, and thereby,

ED(l)1TKD(lq)ED(l′)T2 > 0⇔ dist(l, lq) ≥ dist(l′, lq).

As a result, the correctness of our PDC holds.
Note that, this technique can be easily adapted to answer

queries like
∑
lqi∈Q

d(l, lqi) ≥
∑
lqi∈Q

d(l′, lqi) by using
TKD(Q) =

∑
lqi∈Q

TKD(lqi). We denote this modification
of DTokenGen as DTokenGen(L, skD, Q) and analyze its
correctness as follows.

Since TKD(Q) =
∑
lqi∈Q

TKD(lqi), we have

ED(l)1TKD(Q)ED(l′)T2

=r1r
′
1r
∗
1

∑
qi∈Q

(dH(Lv, Lqi)− dH(L′v, Lqi) + δ − δ′) + r2r
′
2r
∗
2

=r1r
′
1r
∗
1

∑
qi∈Q

(dist(l, lqi)− dist(l′, lqi)) + r2r
′
2r
∗
2 ,

where r∗1 =
∑
lqi∈Q

r′′1 and r∗2 =
∑
lqi∈Q

r′′2 , and
r1r
′
1r
∗
1 > r2r

′
2r
∗
2 > 0 still holds. Therefore, we have

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 5

ED(l)1TKD(Q)ED(l′)T2 > 0 ⇔
∑
lqi∈Q

dist(l, lqi) ≥∑
lqi∈Q

dist(l′, lqi), i.e., the correctness of PDC holds with
DTokenGen(L, skD, Q).

B. Main Idea of Our EPGQ Scheme

The main idea of our EPGQ scheme consists of two parts,
namely, extracting PFq,τ = {p | sim(Fp, Fq) ≥ τ, p ∈ P} and
finding the k nearest records in PFq,τ , where the second part
can be achieved by comparing their distances to the reference
locations Q through our PDC technique. For the first part,
we employ a filtration-and-verification approach, where the
filtration is achieved through the two following lemmas.

Lemma 1 (Prefix-Filter [20]). Given two sets s and s′, whose
elements are sorted in global order (e.g., frequency-based
order), and a threshold τ , if sim(s, s′) ≥ τ , we have
ψ(s) ∩ ψ(s′) 6= ∅, where ψ(s) is the collection of the first
(b(1− τ)|s|c+ 1) elements in s.

Lemma 2 (Length-Filter [21]). Given two sets s and s′ and a
threshold τ , if sim(s, s′) ≥ τ , we have τ · |s| ≤ |s′| ≤ |s|τ .

Based on these two lemmas, we can easily deduce that

sim(Fp, Fq) ≥ τ ⇒

{
|Fp| ∈ [τ · |Fq|, |Fq|

τ],

Fp ∩ ψ(Fq) 6= ∅.
(2)

As the first condition in Eq. (2) can be regarded as a range
query over the lengths of records’ feature sets |Fp| for p ∈ P ,
we design an extended B+-tree where each record p is indexed
by |Fp|. Then, for each inner node node in T0, we extend it
with a set Fnode containing all features in its descendants,
and we denote the extended B+-tree as T1. To improve the
effectiveness of Prefix-Filter, we sort all features fi ∈ F
by their frequencies in P in ascending order, i.e., f1 is the
least frequently appeared element, while f|F| is the most
frequent element. Thereby, Fnode can be represented as a
binary vector Bnode = {bi}|F|i=1, where bi = 1 if fi ∈ Fnode,
and bi = 0 otherwise; and node can be represented as node =
{Bnode, [xnode,1, xnode,2]}, where [xnode,1, xnode,2] denotes the
range of |Fp| covered by node. In the following steps, we
construct two vectors xnode and qf from node and query
q = {Fq, τ, Q}, such that xnode ◦ qf ≤ 0⇒ sim(Fp, Fq) < τ
for all p covered by node.

Step 1: For Prefix-Filter, we build a vector Bq,1 = {b̃q,i}|F|i=1

from the query q, where b̃q,i = 1 if fi ∈ ψ(Fq), and b̃q,i = 0
otherwise. Then, Bnode ◦ Bq,1 > 0 if Fnode ∩ ψ(Fq) 6= ∅, and
Bnode ◦ Bq,1 = 0 otherwise.

Step 2: For Length-Filter, we have

[xnode,1, xnode,2] ∩
[
τ |Fq|,

|Fq|
τ

]
6= ∅⇔

{
xnode,1 ≤ |Fq|

τ ,

xnode,2 ≥ τ |Fq|.

Hence, we respectively convert xnode,1 and xnode,2 into sets
VENC(xnode,1) and VENC(xnode,2), where VENC(·) encodes
a value into ∆+1 prefixes, where ∆ = dlog2(maxFp∈P |Fp|)e.
For instance, VENC(2) = {∗, 0∗, 00∗, 001∗, 0010}. Corre-
spondingly, we map the ranges R1 = [0,

|Fq|
τ] and R2 =

[τ |Fq|, 2∆] into two sets RENC(R1) and RENC(R2), where
RENC(·) encodes a range into a compact set of prefixes

that can cover it. For instance, when ∆ = 4, we have
RENC([0, 5]) = {00∗, 010∗}. Please see [22] for more details
on VENC(·) and RENC(·). We can observe that, when a value
x is included in a range R, we have |VENC(x)∩RENC(R)| =
1, and |VENC(x) ∩ RENC(R)| = 0 otherwise. Then, we can
deduce that

[xnode,1, xnode,2] ∩
[
τ |Fq|,

|Fq|
τ

]
6= ∅

⇔ |VENC(xnode,`) ∩ RENC(R`)| = 1, for ` = 1, 2.

Step 3: For ` = 1, 2, we respectively build two Bloom
filters Ψval(xnode,`) and Ψrange(R`) from VENC(xnode,`) and
RENC(R`), where the lengths of Bloom filters are d2, and
they are initialized by the same set of h hash functions. Next,
we respectively constructs two vectors{

Ψnode= {b′j}
2d2+1
j=1 = (Ψval(xnode,1),Ψval(xnode,2), 1),

Ψq = {b̃′j}
2d2+1
j=1 = (Ψrange(R1),Ψrange(R2),−2h),

and Ψnode ◦Ψq =
∑
`=1,2 |Ψval(xnode,`) ◦Ψrange(R`)| − 2h <

0⇒ [xnode,1, xnode,2] ∩
[
τ |Fq|, |Fq|

τ

]
= ∅.

Step 4: By combining Bnode and Ψnode, we obtain a vector

xnode = (r1b1b
′
1, · · · , r1bib

′
j , · · · , r1b|F|b

′
2d2+1,

r2b1, · · · , r2b|F|,−r3),

where r1 > r2 > r3 > 0 are random numbers. Correspond-
ingly, we combine Bq,1 and Ψq to obtain

qf = (r′1b̃1b̃
′
1, · · · , r′1b̃ib̃′j , · · · , r′1b̃|F|b̃′2b2+1,

r′2b̃1, · · · , r′2b̃|F|, r′3),

where r′1 > r′2 > r′3 > 0 are random numbers. Then, we have

xnode ◦ qf =

|F|∑
i=1

bib̃i ·
2d2+1∑
j=1

(r1r
′
1b
′
j b̃
′
j + r2r

′
2)− r3r

′
3

=Bnode ◦ Bq,1 · (r1r
′
1 ·Ψnode ◦Ψq + r2r

′
2)− r3r

′
3,

and xnode ◦ qf ≤ 0⇔ Bnode ◦ Bq,1 = 0 ∨ Ψnode ◦Ψq < 0⇒
[xnode,1, xnode,2]∩

[
τ |Fq|, |Fq|

τ

]
∨Fnode ∩ψ(Fq) = ∅. That is,

xnode ◦qf ≤ 0⇒ sim(Fp, Fq) < τ for all p covered by node.
To verify whether p ∈ PFq,τ through a vector inner-product,

from Fp and q, we can construct two vectors{
xFp

= (r1BFp
,−r1|Fp|,−r1),

qv = (r̄′1(1 + τ)Bq,2, r̄′1τ, r̄′1τ |Fq|),

where Bq,2 = {b̄q,i}|F|i=1, b̄q,i = 1 if fi ∈ Fq , and b̄q,i = 0
otherwise, and r1 > 0 and r̄′1 > 0 are random numbers. Then,
we have

xFp
◦ qv ≥ 0

⇔ r1r̄
′
1((1 + τ)BFp

◦ Bq,2 − τ(|Fp|+ |Fq|)) ≥ 0

⇔ (1 + τ)BFp
◦ Bq,2 − τ(|Fp|+ |Fq|) ≥ 0

⇔
BFp
◦ Bq,2

|Fp|+ |Fq| − BFp ◦ Bq,2
≥ τ.

Thus, xFp ◦ qv ≥ 0 ⇔ sim(Fp, Fq) ≥ τ , i.e., p ∈ PFq,τ . We
denote the resulting B+-tree index as T .

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 6

C. Description of Our EPGQ Scheme

Based on the main idea, we construct our EPGQ scheme,
which consists of four algorithms, i.e., System Initialization,
Data Outsourcing, Token Generation, and Query Conduction.

1) System Initialization: In this algorithm, the service
provider SP generates secret keys for each party in the system
in the following steps.

Step 1: SP runs DKeyGen(G) to obtain (L, skD =
(M1,M2)). Let d1 = |F|. SP selects an integer d2 which will
be the length of Bloom filters. Then, SP generates two random
invertible real matrices M3 ∈ R(d1(2d2+1)+2)×(d1(2d2+1)+2)

and M4 ∈ R(d1+2)×(d1+2).
Step 2: SP selects a hash function H(·) and a symmetric

key encryption scheme SE (·), e.g., Advanced Encryption
Standard (AES). After that, SP selects a secret key K1 for
SE (·) and a random string K2.

Step 3: SP securely sends K2 to the cloud server CS.
For each user U with UIDu, he/she is authorized by SP with
({Mi}4i=1,K1,Ku), where Ku = H(K2‖UIDu). In addition,
SP publishes L, i.e., the encoding of all vertices in G.

2) Data Outsourcing: In this algorithm, SP builds the index
T and outsources it to CS. Specifically, after constructing T
following the main idea, SP first encrypts each nodes in T .
For each inner node node = {Fnode, [xnode,1, xnode,2]}, SP
encrypts it into x̂node = xnodeM3. While for each record
p = (Fp, lp) ∈ P , it is assigned to a leaf node in T and is
encrypted into three parts, namely, i) x̂Fp

= xFp
M4 encrypted

from Fp, ii) (ED(lp)1, ED(lp)2) = DEnc(L, skD, lq), and
iii) SE (K1, p). We denote each encrypted record E(p) as
E(p) = {x̂Fp , ED(lp)1, ED(lp)2,SE (K1, p)}. After encrypt-
ing each nodes, SP randomly permutes nodes in the encrypted
tree E(T). Finally, SP uploads E(T) to CS.

3) Token Generation: Given ({Mi}4i=1,K1,Ku), an autho-
rized user U with ID UIDu can encrypt his/her query requests
into tokens. Specifically, given a query request q = (Fq, τ, Q),
U first builds the two vectors qf and qv following the
main idea. Then, U runs DTokenGen(L, skD, Q) to obtain
TKD(Q). After that, U computes q̂f = (M−1

3)qTf , q̂v =
(M−1

4)qTv , and Ku,ts = H(Ku‖ts), where ts is the current
timestamp. Finally, U queries CS with

E(token) = {SE (Ku,ts, (q̂f, q̂v,TKD(Q))), ts, UIDu}.

4) Query Conduction: Upon receiving an encrypted query
token E(token), the cloud server CS can run the following
steps to conduct the query over E(T).

Step 1: CS extracts ts and UIDu from E(token) and
rejects the query if ts is not fresh. Otherwise, it computes
Ku,ts = H(H(K2‖UIDu)‖ts) to recover q̂f, q̂v,TKD(Q)
from E(token).

Step 2: CS traverses the encrypted index T . For each
node ∈ E(T), CS verifies whether x̂node ◦ q̂f > 0, and prunes
it if x̂node ◦ q̂f ≤ 0. After running this step, CS collects all
records from nodes that have not been pruned and gets a set
of candidate records C.

Step 3: For each E(p) ∈ C, CS checks whether x̂Fp
◦ q̂v ≥

0, and it removes E(p) from C if x̂Fp
◦ q̂v < 0. We denote the

resulting set as PFq,τ = {E(p) | ∀p ∈ C, sim(Ep, Eq) ≥ τ}.

Step 4: CS compares all encrypted records in PFq,τ to ob-
tain the k nearest records, denoted as Pq . Specifically, for each
two POI records E(pi) and E(pj) ∈ E(T), CS compares their
distance to Q through DCmp(ED(pi)1, ED(qj)2,TKD(Q)).

Step 5: CS returns SE (Ku,ts, {SE (K1, p) | p ∈ Pq}) as
the query result. Upon receiving the ciphertext from CS, U
can decrypt it with Ku,ts and K1 to recover the plaintexts of
the query result.

Correctness. Based on the correctness of our PDC tech-
nique, the correctness of extracting kNN from PFq,τ , i.e.,
Step 4, can be easily verified. As for Step 2 and Step 3, its
correctness can be verified through our main idea presented in
Section IV-B, since x̂node◦q̂f = xnodeM3M

−1
3 qTf = xnode◦qf

and x̂Fp
◦ q̂v = xFp

M4M
−1
4 qTv = xFp

◦ qv. Therefore, the
correctness of our EPGQ construction holds.

V. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
EPGQ scheme. Before that, we first analyze the security of
our building block PDC technique.

A. Security Analysis of Our PDC Technique

Here we first show that our PDC technique is selectively
secure in the real/ideal simulation setting. Before formally
analyzing the security, we first define the leakage in PDC.
Given two locations {l, l′} and a query location lq , the
leakage is L = {L, sign(dist(l, lq)− dist(l′, lq))}, i.e., the
compressed RNHE labels for all vertices in the road network
G and whether dist(l, lq) is larger/smaller than or equal to
dist(l′, lq). Based on the leakage, we respectively define the
real and ideal experiments.

Real Experiment: The real experiment involves a challenger
and a PPT (probabilistic polynomial-time) adversary A, and
they interact as follows.
• Setup: In the setup algorithm, A chooses two random

locations l and l′, and sends them to the challenger. Then, the
challenger runs DKeyGen(G) to generate a secret key skD =
(M1,M2) and publishes L.
• Query phase 1: A adaptively chooses α query locations
{lqi | 1 ≤ i ≤ α} and sends them to the challenger, where α is
a polynomial number. Then, the challenger generates a token
for each location lqi as TKD(lqi) = DTokenGen(L, skD, lqi)
and returns {TKD(lqi)}αi=1 to A.
• Challenge phase: The challenger encrypts the two lo-

cations {l, l′} as (ED(l)1, ED(l)2) = DEnc(L, skD, l) and
(ED(l′)1, ED(l′)2) = DEnc(L, skD, l′), and it sends the
ciphertexts to A.
• Query phase 2: Similar to Query phase 1, A submits

another (β−α) query locations {lqi | α < i ≤ β} and gets the
query tokens {TKD(lqi) | α < i ≤ β} from the challenger,
where β is a polynomial number.

Ideal Experiment: The ideal experiment involves a simula-
tor with leakage L and a PPT adversary A, and they interact
with each other as follows.
• Setup: In the setup algorithm, A first computes and

publishes L, i.e., the RNHE labels for all vertices in G. Then,
it chooses two random locations l and l′, and it sends l and l′

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 7

to the simulator. After that, the simulator generates two pairs
random vectors (ED(l)1, ED(l)2) and (ED(l′)1, ED(l′)2) as
the ciphertexts of the two locations.
• Query phase 1: A adaptively chooses α query locations

{lqi | 1 ≤ i ≤ α} and sends them to the simulator, where α
is a polynomial number. For each lqi , the simulator has L =
sign(dist(l, lqi) − dist(l′, lqi)), and it generates a random
matrix TKD(lqi) with rank ρ(TKD(lqi)) = 3 satisfying

L1 > 0 and L2 < 0, if L = 1;

L1 > 0 and L2 > 0, if L = 0;

L1 < 0 and L2 > 0, if L = −1,

where L1 and L2 are respectively ED(l)1TKD(lqi)ED(l′)2

and ED(l′)1TKD(lqi)ED(l)2. Then, the simulator returns
these query tokens to A.
• Challenge phase: The simulator sends (ED(l)1, ED(l)2)

and (ED(l′)1, ED(l′)2) to A.
• Query phase 2: Similar to Query phase 1, A adaptively

chooses (β−α) query locations {lqi | α < i ≤ β} and submits
them to the simulator, where β is a polynomial number. The
simulator returns the tokens {TKD(lqi) | α < i ≤ β}.
Definition 2 (Security of the PDC technique). Our PDC
technique is selectively secure with the leakage L iff for
all PPT adversaries issuing polynomial numbers of query
tokens, there exists a PPT simulator such that the probability
for a PPT distinguisher D to distinguish the real and ideal
experiments is negligible, i.e., |Pr[D(ViewA,Real = 1)] −
Pr[D(ViewA,Ideal,L = 1)]| is negligible.

In our real/ideal experiments, the view of D is {(ED(l)1,
ED(l)2), (ED(l′)1, ED(l′)2), {TKD(lqi)}

β
i=1}. Then, we

show that D cannot distinguish the two experiments as
follows. First, in the real experiment, (ED(l)1, ED(l)2),
(ED(l′)1, ED(l′)2) are ciphertexts generated by DEnc, and
TKD(lqi) is a query token generated by DTokenGen. Dur-
ing generating each ciphertext (ED(l)1, ED(l)2) and each
query token TKD(lqi), random numbers {r1, r2, r

′
1, r
′
2} and

{r′′1 , r′′2} are involved, respectively. These random numbers
make the ciphertexts and query tokens look like random vec-
tors/matrices. Second, in the ideal experiment, the ciphertexts
and query tokens are randomly chosen based on the leakage,
so they are also random vectors/matrices. Thus, the view of D
is random ciphertexts and query tokens in both experiments,
and the probability that D can distinguish them is negligible.
Therefore, the PDC technique is selectively secure.

B. Security Analysis of Our EPGQ Scheme

Next, we analyze the security of our EPGQ scheme. Specifi-
cally, we show that the EPGQ scheme can preserve the privacy
of the dataset, query requests, and query results as follows.
• The dataset in our EPGQ scheme is privacy-preserving.

The cloud server is considered to be honest-but-curious as
detailed in our security model. That is, it may attempt to
recover the plaintext of the outsourced dataset, which is
represented by an encrypted B+-tree E(T). Each node in
E(T) is encrypted as a vector x̂node, and each POI record p is
encrypted as E(p) = ((ED(lp)1, ED(lp)2), x̂Fp

,SE (K1, p)),

where (ED(lp)1, ED(lp)2) and SE (K1, p) are generated by
DEnc and SE . Thus, CS cannot obtain useful information from
(ED(lp)1, ED(lp)2) and SE (K1, p), based on the security of
our PDC scheme and SE . As for x̂node and x̂Fp

, without
knowing M3, M4, and random numbers {r1, r2, r3} that are
independently chosen for each node/record, CS cannot recover
useful information. While processing group kNN queries, CS
can only know whether a node satisfies Eq. (2) and whether a
record p satisfies sim(Fp, Fq) ≥ τ , but it cannot tell whether
a node is pruned by Prefix-Filter or Length-Filter. Thus, the
privacy of the dataset is preserved against the cloud server.
• The query requests in our EPGQ scheme are privacy-

preserving. As the query requests contain information related
to the query users’ preferences and location privacy, they need
to be protected against the cloud server and other query users.
In our EPGQ scheme, a query request (Fq, τ, Q) is encrypted
as E(token) = (SE (Ku,ts, (q̂f, q̂v,TKD(Q))), ts, UID). A
query user cannot derive Ku,ts of other query users with-
out knowing K2. Therefore, the query requests are pro-
tected against other query users, and only CS can extract
(q̂f, q̂v,TKD(Q)) from E(token). Based on the security of
our PDC technique, CS cannot obtain any useful information
related to the set of query locations Q from TKD(Q). As for
q̂f and q̂v, CS cannot recover the plaintext of Fq and τ without
knowing the matrices {M3,M4} and the random numbers
used during encryption. Furthermore, while conducting the
queries, CS can only obtain {x̂node◦q̂f} and {x̂Fq

◦q̂v}, which
can only reveal whether a node satisfies Eq. (2) and whether
a record p satisfies sim(Fp, Fq) ≥ τ . However, CS cannot
recover the plaintext of Fq . Therefore, the query requests is
privacy-preserved against CS and query users.
• The query results in our EPGQ scheme are privacy-

preserving. The query result is a set of POI records that satisfy
the query request, and query users may be curious about other
users’ query results as they contain the information related
to the users’ preferences and query locations. However, in
our EPGQ scheme, the query result is encrypted by Ku,ts

as SE (Ku,ts, {SE (K1, p) | p ∈ Pq}). Therefore, based on
the security of SE , a query user cannot recover others’ query
results without knowing the corresponding Ku,ts. That is, the
privacy of the query results in our EPGQ scheme is preserved
against other query users.

VI. PERFORMANCE ANALYSIS

In this section, we study the performance of our proposed
EPGQ scheme. Specifically, we evaluate the computational
costs for the service provider, query users, and the cloud server
in terms of time consumption during Data Outsourcing, Token
Generation, and Query Conduction, respectively.

A. Evaluation Setup

We implement our EPGQ scheme in Rust, and we build our
dataset upon the New York road network data [23] and a set
of photos taken in New York extracted through Flickr public
API [24]. Specifically, each photo links to a location in New
York and a set of keywords (features), and it is regarded as a
POI in our dataset. The dataset contains 10,490 records and

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 8

5,461 features, and as shown in Fig. 5, 1,000 features in the
dataset link to 5 records, while a majority of records link to
less than 30 features. To demonstrate how the dataset’s size
affects the performance of our scheme, we extract vertices
from the original network to form the testing datasets such
that their lengths of the compressed RNHE encoding d range
from 100 to 400. Furthermore, to show the effect of d1 on
the performance of our EPGQ scheme, we extract the feature
spaces of different sizes d1 from the original dataset, and
records that do not contain any selected features will be
removed from the dataset.

0 1000 2000 3000 4000 5000
100

101

102

103

Fr
eq

ue
nc

y

(a) # of records containing a feature.

0 20 40 60
Number of Features

101

102

103

Nu
m

be
r o

f R
ec

or
ds

(b) # of features related to a record.

Fig. 5: Distribution of the features’ frequencies in the dataset and the
distribution of the number of features for each record.

In the following, we conduct the evaluations with different
parameters on a platform equipped with an Intel(R) Core(TM)
i5-1038NG7 CPU @2.00GHz, 16GB RAM and macOS 11.4
operating system, and we set the fanout of B+-tree to be 32. In
addition, we set the number of hash functions used in Bloom
filters as h = 2 and their bit length to be 100. Note that, as the
Bloom filters will only be used for filtration, their false positive
rate will not affect the accuracy of the proposed scheme. For
each case, we run the evaluations for 10 times, and the average
performance results are reported.

B. Evaluation Results

Here we analyze the computational cost of Data Outsourc-
ing, Token Generation, and Query Conduction, respectively.
• Data Outsourcing: In the data outsourcing phase, the

service provider SP builds the index T and encrypts the
resulting index into E(T). Specifically, to encrypt an in-
ner node in T , SP computes one outer product of order
d1 × (2d2 + 1) and a vector-matrix multiplication of order
(d1×(2d2 +1)+2)×(d1×(2d2 +1)+2). As shown in Fig. 6,
the computational cost for encrypting an inner node increases
with the number of features d1 and the size of Bloom filters d2.
On the other hand, to encrypt a leaf node in T , SP computes
three vector-matrix multiplications, where the square matrix in
the first multiplication is of order (d1 + 2), and those for the
second and third multiplications are of order (d+3). According
to Fig. 6, the computational cost for SP to encrypt a leaf node
increases with the length of the compressed RNHE labels d,
the number of features d1 and the length of Bloom filters d2.
Specifically, as reported by the figure, when d1 = 300 and
d2 = 60, the average time consumption for encrypting an
inner node is less than 1s, and that for encrypting a leaf node
is less than 2ms. Hereinafter, we fix the length of Bloom filters
to be d2 = 30.

100 200 300 400 500
Number of Features d1

100

101

102

Av
er

ag
e

Ti
m

e
(m

s)

Inner Node
Leaf Node

(a) Avg. time for encrypting a node
when d2 = 30 with different d1.

30 35 40 45 50 55 60
Length of Bloom Filters d2

100

101

102

103

Av
er

ag
e

Ti
m

e
(m

s)

Inner Node
Leaf Node

(b) Avg. time for encrypting a node
when d1 = 300 with different d2.

d 100 200 300 400
Time (µs) 430.21 432.49 544.51 604.48

(c) Avg. time for encrypting a leaf node vs d.

Fig. 6: Average time consumption for encrypting a inner node or leaf
node in the index T with different d, d1 and d2.

• Token Generation: In the token generation phase, a query
user encrypts his/her query token into two vectors and a matrix
by conducting two vector-matrix multiplications with square
matrices of orders (d1 × (2d2 + 1) + 2) and (d1 + 2), and
two matrix multiplications between square matrices of order
(d+3). As shown in Fig. 7, the computational cost for the user
to encrypt a query token increases with the number of features
d1. As for the length of the compressed RNHE labels d, its
effect on the computational cost is less significant according
to the experimental data. Furthermore, the number of locations
in the query token, i.e., |Q|, has negligible affect on the user’s
computational cost. This is mainly because that, as detailed in
Section IV, the increase of |Q| will only result in more vector
additions but will not increase the matrix size or the number
of matrix multiplications.

100 200 300 400 500
Number of Features d1

101

102

Av
er

ag
e

Ti
m

e
(m

s)

d= 100
d= 200
d= 300
d= 400

Fig. 7: Average time for encrypting a query token with different
numbers of features d1 = |F| and different lengths of compressed
RNHE labels d.

• Query Conduction: In the query conduction phase, the
cloud server CS traverses the encrypted index E(T). As
detailed in Section IV-C, CS conducts a query request by
i) running Breadth-First Search on E(T) to obtain a set of
candidates, ii) refining the candidate set such that all elements
in the set satisfy the Jaccard similarity range criteria, and iii)
comparing the distances between the records in the resulting
set to extract the k nearest neighbors. Then, we respectively
analyze the computational cost of these three steps as follows.

Step 1: In the filtration step, CS traverses E(T) and verifies
whether each node can be pruned by conducting an inner
product of vectors of order (d1(d2 + 1) + 2). That is, the

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 9

computational cost for CS to process one inner node in
E(T) increases with the number of features d1 = |F|, as
demonstrated in Fig. 8 (a). Since the number of inner nodes
visited in this step is affected by the distribution of the dataset
and the query request, the overall computational cost for this
step varies for different queries. As shown in the figure, when
τ = 0.1, the number of visited inner nodes is much higher
than that of τ = 0.2, · · · , 0.5 and leads to a higher time
consumption. Specifically, when τ = 0.1 and d1 = 500,
the average time consumption for processing a node in E(T)
during Step 1 is less than 10ms.

100 200 300 400 500
Number of Features d1

100

101

Av
er

ag
e

Ti
m

e
(m

s)

=0.1
=0.2
=0.3
=0.4
=0.5

(a) Avg. time for Step 1

0 500 1000 1500 2000
Candidate Set Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Av
er

ag
e

Ti
m

e
(m

s)

d1 = 100
d1 = 200
d1 = 300

d1 = 400
d1 = 500

(b) Avg. time for Step 2

Fig. 8: Avg. time consumption for Step 1 with different numbers of
features d1 and that for Step 2 with different sizes of candidate set.

Step 2: Based on the candidate set generated in the fil-
tration step, CS verified whether a record p satisfies that
sim(Fp, Fq) ≥ τ , where Fq is the set of query features. Specif-
ically, for each Fp, CS conducts an inner product between
vectors of order (d1 + 2), i.e., the computational cost for each
p increases with d1, i.e., the slope of the line increases with
d1 as shown in Fig. 8 (b).

0 250 500 750 1000 1250 1500
Size of | Fq, |

0

20

40

60

80

Ti
m

e
(m

s)

k=2
k=4
k=6

(a) d = 100

0 250 500 750 1000 1250 1500
Size of | Fq, |

0

25

50

75

100

125

150

Ti
m

e
(m

s)

k=2
k=4
k=6

(b) d = 400

Fig. 9: Average time consumption for Step 3 with different d and k.

Step 3: Based on the resulting set from Step 2, CS extracts
the kNN records by comparing (|PFq,τ | · k − k(k − 1)/2)
times of comparison, where each comparison is achieved by
one vector-matrix-vector multiplication of order (d + 3). As
shown in Fig. 9, the time consumption of Step 3 increases with
the size of |FFq,τ | and k, and larger d leads to higher time
consumption. Specifically, when d = 400, extracting k = 6
records from 1,500 records takes roughly 170ms.

VII. RELATED WORK

In this section, we review some works that are closely
related to our proposed scheme in terms of privacy-preserving
k nearest neighbor (kNN) over road networks and privacy-
preserving group k nearest neighbor (GkNN) queries. Further-
more, we present a comparison between our proposed scheme
and these related works in Table I.

TABLE I: Comparison with Existing Works

GkNN Enc. Dataset Road Network Dist. Feature-based
[9] 7 3 7 7

[10] 7 3 3 7
[11] 7 3 3 7
[12] 7 3 3 7
[13] 7 3 7 7
[14] 3 7 7 7
[15] 3 7 3 7
[16] 3 7 3 7
[17] 3 3 7 7
Ours 3 3 3 3

Several schemes [9]–[13] focused on privacy-preserving
NN or kNN queries have been proposed. Yang et al. [9]
built their scheme based on the Paillier publickey encryption
(PKE) and 2-hop labeling index [25], and Voronoi graph are
employed to achieve road network distance computation and
kNN extraction. However, as the Voronoi graph is built upon
pre-computed distances [26], it is hard to be adapted for GkNN
queries where the distances depend on the combination of
query locations. Some works [10]–[13] were proposed for
privacy-preserving ride hailing over road networks, which can
also be regarded as nearest neighbor queries. However, both
Luo et al. [10] and Yu et al. [11]–[13] built their schemes
with homomorphic encryption schemes under a two-server
setting. Therefore, extending these works to support feature-
based GkNN queries will invoke heavy overheads in terms of
both computation and communication.

Some schemes [14]–[17] were proposed to support privacy-
preserving GkNN queries. Hashem et al. [14] proposed a
scheme by employing an R-tree based index to organize
the dataset, and users’ locations are obfuscated into regions
to preserve the location privacy. Wu et al. [15], [16] built
their schemes based on Paillier PKE [27], and dummies
are employed to hide the real requests. However, these two
schemes are designed for a different scenario from ours. Yu
et al. [17] built their scheme upon somewhat homomorphic
encryption scheme [28] and the distances between a location
and the query locations are captured by Euclidean distance,
which can only achieve approximate road network GkNN
queries [29]. In addition, as demonstrated in Table I, none of
the above mentioned works can support GkNN queries over
encrypted datasets under road network distance. Therefore,
these schemes cannot apply to our scenario.

As demonstrated in Table I, different from the above
mentioned schemes, our proposed scheme can simultaneously
support feature-based criteria and accurate GkNN queries over
road network while preserving the privacy of the dataset, query
requests, and query results.

VIII. CONCLUSION

This paper proposes an efficient and private feature-based
group k nearest neighbor query scheme over road networks,
called EPGQ. Specifically, we first built a privacy-preserving
distance comparison (PDC) technique that can compare the
sums of distances from two records to a set of locations. We
constructed our EPGQ scheme based on PDC, which handles
GkNN queries through filtration and verification. Security

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 10

analysis shows that our PDC technique is selectively secure
and the EPGQ scheme can well preserve the privacy of
the dataset, query requests and results. Performance analysis
further demonstrates that our EPGQ scheme is efficient for
both query users and the cloud server. In our future work,
we will evaluate the performance of our EPGQ scheme under
real-world settings.

ACKNOWLEDGMENTS

This research was supported in part by NSERC Discovery
Grants (04009, RGPIN-2022-03244).

REFERENCES

[1] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, pp. 467–478.

[2] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in
Proceedings of the 32nd International Conference on Very Large Data
Bases, Seoul, Korea, September 12-15, 2006. ACM, 2006, pp. 751–762.

[3] S. Zhang, S. Ray, R. Lu, Y. Zheng, Y. Guan, and J. Shao, “Achieving
efficient and privacy-preserving dynamic skyline query in online medical
diagnosis,” IEEE Internet Things J., pp. 1–1, 2021.

[4] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest
neighbor queries,” in Proceedings of the 20th International Conference
on Data Engineering, ICDE 2004, 30 March - 2 April 2004, Boston,
MA, USA. IEEE Computer Society, 2004, pp. 301–312.

[5] F. Guo, Y. Yuan, G. Wang, L. Chen, X. Lian, and Z. Wang, “Cohesive
group nearest neighbor queries over road-social networks,” in 35th IEEE
International Conference on Data Engineering, ICDE 2019, Macao,
China, April 8-11, 2019. IEEE, 2019, pp. 434–445.

[6] S. Zhang, S. Ray, R. Lu, Y. Zheng, and J. Shao, “Preserving location pri-
vacy for outsourced most-frequent item query in mobile crowdsensing,”
IEEE Internet Things J., vol. 8, no. 11, pp. 9139–9150, 2021.

[7] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and privacy-
preserving similarity range query over encrypted time series data,” IEEE
Trans. Dependable Secur. Comput., pp. 1–1, 2021.

[8] ——, “Towards practical and privacy-preserving multi-dimensional
range query over cloud,” IEEE Trans. Dependable Secur. Comput., pp.
1–1, 2021.

[9] S. Yang, S. Tang, and X. Zhang, “Privacy-preserving k nearest neighbor
query with authentication on road networks,” J. Parallel Distributed
Comput., vol. 134, pp. 25–36, 2019.

[10] Y. Luo, X. Jia, S. Fu, and M. Xu, “pride: Privacy-preserving ride
matching over road networks for online ride-hailing service,” IEEE
Trans. Inf. Forensics Secur., vol. 14, no. 7, pp. 1791–1802, 2019.

[11] H. Yu, J. Shu, X. Jia, H. Zhang, and X. Yu, “lpride: Lightweight
and privacy-preserving ride matching over road networks in online ride
hailing systems,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 10 418–
10 428, 2019.

[12] H. Yu, X. Jia, H. Zhang, and J. Shu, “Efficient and privacy-preserving
ride matching using exact road distance in online ride hailing services,”
IEEE Trans. Serv. Comput., pp. 1–1, 2020.

[13] H. Yu, X. Jia, H. Zhang, X. Yu, and J. Shu, “Psride: Privacy-preserving
shared ride matching for online ride hailing systems,” IEEE Trans.
Dependable Secur. Comput., vol. 18, no. 3, pp. 1425–1440, 2021.

[14] T. Hashem, L. Kulik, and R. Zhang, “Privacy preserving group nearest
neighbor queries,” in EDBT 2010, 13th International Conference on
Extending Database Technology, Lausanne, Switzerland, March 22-
26, 2010, Proceedings, ser. ACM International Conference Proceeding
Series, vol. 426. ACM, 2010, pp. 489–500.

[15] Y. Wu, K. Wang, Z. Zhang, W. Lin, H. Chen, and C. Li, “Privacy
preserving group nearest neighbor search,” in Proceedings of the 21st
International Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, March 26-29, 2018. OpenProceedings.org, 2018,
pp. 277–288.

[16] Y. Wu, K. Wang, R. Guo, Z. Zhang, D. Zhao, H. Chen, and C. Li,
“Enhanced privacy preserving group nearest neighbor search,” IEEE
Trans. Knowl. Data Eng., vol. 33, no. 2, pp. 459–473, 2021.

[17] H. Yu, H. Zhang, X. Yu, X. Du, and M. Guizani, “Pgride: Privacy-
preserving group ridesharing matching in online ride hailing services,”
IEEE Internet Things J., vol. 8, no. 7, pp. 5722–5735, 2021.

[18] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning clas-
sification over encrypted data,” in 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015. The Internet Society, 2015.

[19] S. Gupta, S. Kopparty, and C. V. Ravishankar, “Roads, codes and spa-
tiotemporal queries,” in Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June
14-16, 2004, Paris, France. ACM, 2004, pp. 115–124.

[20] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for sim-
ilarity joins in data cleaning,” in Proceedings of the 22nd International
Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta,
GA, USA. IEEE Computer Society, 2006, p. 5.

[21] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007. ACM,
2007, pp. 131–140.

[22] A. X. Liu and F. Chen, “Collaborative enforcement of firewall policies in
virtual private networks,” in Proceedings of the Twenty-Seventh Annual
ACM Symposium on Principles of Distributed Computing, PODC 2008,
Toronto, Canada, August 18-21, 2008. ACM, 2008, pp. 95–104.

[23] C. Demetrescu, “9th dimacs implementation challenge - shortest
paths,” http://www.diag.uniroma1.it//challenge9/download.shtml, Jun.
2010, (Accessed on Jul. 2021).

[24] “Flickr services,” https://www.flickr.com/services/api/, (Accessed on Jul.
2021).

[25] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013. ACM, 2013,
pp. 349–360.

[26] M. R. Kolahdouzan and C. Shahabi, “Voronoi-based K nearest neighbor
search for spatial network databases,” in (e)Proceedings of the Thirtieth
International Conference on Very Large Data Bases, VLDB 2004,
Toronto, Canada, August 31 - September 3 2004, M. A. Nascimento,
M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B.
Schiefer, Eds. Morgan Kaufmann, 2004, pp. 840–851.

[27] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic
Techniques, 1999, pp. 223–238.

[28] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[29] H. Hua, H. Xie, and E. Tanin, “Is euclidean distance really that
bad with road networks?” in Proceedings of the 11th ACM SIGSPA-
TIAL International Workshop on Computational Transportation Science,
IWCTS@SIGSPATIAL 2018, Seattle, WA, USA, November 6, 2018.
ACM, 2018, pp. 11–20.

Yunguo Guan is a PhD student of the Faculty of
Computer Science, University of New Brunswick,
Canada. His research interests include applied cryp-
tography and game theory.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3177474, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. XX, DECEMBER 2021 11

Rongxing Lu (Fellow, IEEE) is Mastercard IoT
Research Chair, a University Research Scholar, an
associate professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. Before that, he worked as an assistant
professor at the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity (NTU), Singapore from April 2013 to August
2016. Rongxing Lu worked as a Postdoctoral Fellow
at the University of Waterloo from May 2012 to
April 2013. He was awarded the most prestigious

“Governor General’s Gold Medal”, when he received his PhD degree from the
Department of Electrical & Computer Engineering, University of Waterloo,
Canada, in 2012; and won the 8th IEEE Communications Society (ComSoc)
Asia Pacific (AP) Outstanding Young Researcher Award, in 2013. Dr. Lu is an
IEEE Fellow. His research interests include applied cryptography, privacy en-
hancing technologies, and IoT-Big Data security and privacy. He has published
extensively in his areas of expertise, and was the recipient of 9 best (student)
paper awards from some reputable journals and conferences. Currently, Dr.
Lu serves as the Chair of IEEE ComSoc CIS-TC (Communications and
Information Security Technical Committee), and the founding Co-chair of
IEEE TEMS Blockchain and Distributed Ledgers Technologies Technical
Committee (BDLT-TC). Dr. Lu is the Winner of 2016-17 Excellence in
Teaching Award, FCS, UNB.

Yandong Zheng received her M.S. degree from the
Department of Computer Science, Beihang Univer-
sity, China, in 2017 and she is currently pursuing her
Ph.D. degree in the Faculty of Computer Science,
University of New Brunswick, Canada. Her research
interest includes cloud computing security, big data
privacy and applied privacy.

Songnian Zhang received his M.S. degree from
Xidian University, China, in 2016 and he is cur-
rently pursuing his Ph.D. degree in the Faculty of
Computer Science, University of New Brunswick,
Canada. His research interest includes cloud com-
puting security, big data query and query privacy.

Jun Shao (Senior Member, IEEE) received the
Ph.D. degree from the Department of Computer
Science and Engineering, Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2008. He was a Post-
Doctoral Fellow with the School of Information
Sciences and Technology, Pennsylvania State Uni-
versity, Pennsylvania, PA, USA, from 2008 to 2010.
He is currently a Professor with the School of
Computer and Information Engineering, Zhejiang
Gongshang University, Hangzhou, China. His cur-
rent research interests include network security and

applied cryptography.

Guiyi Wei is a professor of the School of Computer
and Information Engineering at Zhejiang Gongshang
University. He obtained his Ph.D. in Dec 2006
from Zhejiang University, where he was advised
by Cheung Kong chair professor Yao Zheng. His
research interests include wireless networks, mobile
computing, cloud computing, social networks and
network security.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:55:55 UTC from IEEE Xplore. Restrictions apply.

